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The theory of chirality functions described in a previous publication is generalized to allow for 
chiral ligands. In the earlier theory, all symmetry operations of the molecular frame could be thought 
of as permutations of the ligands among the sites; in the present work, improper rotations not only 
permute the ligands, but convert them into mirror images. The group that generates all isomers from 
a given ordered molecule belonging to a frame with n sites is now the "hyperoctahedral" group of 
order 2"n! consisting of all possible combinations of permutations and site reflections. The 
representation theory of these groups is described, and applied to the problem of constructing 
qualitatively complete chirality functions, and of deciding which ligand partitions, and which isomer 
mixtures, are chiral. It is found useful to classify chiral representations of the covering group as 
"ligand specific" and "class specific". The ligand specific representations describe chiral properties 
which are common to all frames and arise purely from the chirality of the ligands, while the class 
specific representations describe the chiral properties of the frame. A number of examples are 
explicitly worked out. 

1. Introduction and Statement of  Problem 

A chirality function is defined as a function which describes a pseudoscalar  
proper ty  of  molecules belonging to a class in its dependence on the nature of  the 
particular molecules. If the molecular  class is characterized by a frame, or  
skeleton, with n sites for ligands, and if molecules belonging to the class are 
distinguished by the nature of the ligands and their distribution among  the sites, 
then a chirality function for this class is partially determined by the frame, and 
depends on variables fr  with indices r for the ligands. 

A general theory of  chirality functions [10], formulated without  reference 
to the part icular  physical phenomenon  being studied, enables one, under any 
set of  special assumptions about  the nature of the molecular  class, to make  
various meaningful  statements. 

The frame is assumed to be achiral. If two isomers differ f rom one another  
by a rearrangement  of  the ligands corresponding to a symmetry operat ion of  
the frame, they must  bei either identical or mirror  images. This leads to a 
requirement on the symmetry,  placement,  and orientation of  the ligands. Achiral 
ligands must  be so fixed in space that all symmetry  operat ions of the frame 
which leave a given site invariant  are symmetry  operat ions for the ligand found 
on that site. Up  to now, our  theory has been restricted to molecules with 
exclusively achiral ligands. 
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In this article, we drop the restriction to achiral ligands. Only symmetry 
operations of the first kind (pure rotations) which leave a site invariant are 
required to be symmetry operations for the ligand located on the site. Symmetry 
operations of the second kind transform chiral ligands into their mirror 
images 1. The concept of isomer is to be understood as also including molecules 
in which chiral ligands may be replaced by their mirror images. Isomers which 
differ from one another only by a permutation of ligands among the sites 
(without inversion of any ligand) will be referred to as permutational isomers. 

The basic formulation and definitions will be the same as, or analogous to, 
those used in [10]. (5 is the symmetry group of the frame, ~ the invariant 
subgroup of the pure rotations. The column matrix 

L =  d2 (1) 

n 

represents a given "ordered molecule '~ (,,geordnetes Molekiil", cf. [10]). To each 
rotation of ~ there corresponds a ligand permutation ~ on the fixed frame. The 
application of ~ to L leads to the ordered molecule 

~L= {'i 2 . 

\& 
This determines a homomorphic mapping of 3~ onto a permutation group 91. 
In the case of achiral ligands, in which one need not consider their conversion 
to mirror images, one can also associate permutations with the rotary reflec- 
tions of (5 (elements of the coset of ~ in (5). In this way, all elements of (5 may be 
described by pure permutations. In the case of chiral ligands, however, 
representation of an improper rotation must include the simultaneous transforma- 
tion of all ligands into mirror images. 

The operation which transforms the ligand on site k into its mirror image 
will be denoted by Zk, and the mirror image of #i by Y*. Thus, we have 

�9 �9 

z k is therefore a reflection, restricted to the ligand located on the site k, in a 
mirror plane of the frame which contains site k; or, if there is no such mirror 
plane, in a plane containing a symmetry axis of the first kind passing through 
site k; or, if there also is no such axis, in a plane chosen in such a way that the 

Note that the symmetry requirement for the ligands is automatically satisfied if the ligands 
are assumed to be freely rotating, or if an ensemble average over conformations is to be taken. 
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reflection leads to the natural orientation of the mirror image ligand. We shall 
refer to such an operation as a "site reflection". 

If 1.o--1.1 Zz...% denotes the simultaneous site reflection of all ligands, then 
each improper rotation of (5 can be represented by an operation of the form 
6'% = %~', in which 6' denotes the corresponding rearrangement of the ligands 
among the sites. Thus, we find 

(i 1 \)i.*/ 
The totality of the improper rotations, i.e., the coset of ~3 in (5 is mapped in 

this way onto the set of elements %J,  in which 6' is a permutation describing 
only the reordering of the ligands under an improper rotation of (5. We have 
the homomorphism 

of the group (5 on ~ = {9l, Zo~'91' }. 
We also have the isomorphism 

~ ~ = {91, o'91) 

in which ~ denotes the permutation group whose elements describe the symmetry 
operations of (5 neglecting the reflection of ligands. In the case of exclusively 
achiral ligands, the 1.k are symmetry operations for the corresponding ligands, 
and it is therefore permissible, as in [10], to make use of the group 
instead of ~. 

The group of all operations transforming a given ordered molecule into all 
its isomers, in our extended definition of the term, shall be denoted by ~,.  Its 
elements a are pure permutations, pure site reflections and products of the two. 
The subgroup 5~ of site reflections on fixed sites, without simultaneous 
reordering, consists of all possible products zi 1.j... zr of site reflections on sites i, 
j .... r. Since the ordering does not affect the result of a sequence of site reflections 
on fixed sites, it follows that 3; is a direct product of groups 3;i = {e, 1.i}, each of 
which consists of the unit element and the reflection on one site: 

3 ; = 3 ; 1  x 3;2 x ... x 3 ; . .  

It is clear that the result of a site reflection operation of 3; followed by a 
permutation, can also be reached by the same permutation followed by site 
reflections on other sites. It follows that 

(7" ~ d ' ~  ~ "~t /0  ~ O Z ' O -  1 ~ .  i . I  . 

This, together with the commutativity of all site reflections, leads to the con- 
clusion that 37 is an abelian invariant subgroup of ~n. The subgroup ~ ,  of the 
pure permutations, on the other hand, is not invariant. Since ~ ,  and 3; have 
only the unit element in common, ~ ,  is a semidirect product of 3; and the 
symmetric group ~ . :  

~ . = Z v |  I ~ . l = n ! 2  ". 
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As in [10], with completely analogous definitions and the same reasoning, we 
may consider the elements of the group algebra of 6 ,  as denoting ensemble 
operators. Application of an element ~z of the group algebra to a column 
matrix L of type (1), i.e., the application of an ensemble operator a to an 
ordered molecule, leads to a linear combination of ordered molecules with 
complex coefficients, ~L = Za(a) o-L. 

Special ensemble operators are the projection operators 

1 1 
/ ~ = - - ~  and fix= { ~ - / ~ Z o ~ ' }  

which can be applied to an arbitrary ,z to give 

cT=fi~a and f iz~=f ix~ .  
The operator Y is expressible in the form 

~ = / ~ ( a j ) ~ r j  with coefficients ~(aj)= Z a(~aj) 
j ~egl 

and elements aj running through a representative system for right cosets of 91 
in 6. .  

The coefficients g(a~) in f i ~ L  = Eg(o-j)/~ajL refer to a collection of ordered 
molecules ~ a j L  differing only by their orientation in space if the numbering of 
sites is ignored. Therefore different fi~o-jL with j= 1, 2... are representative for 
different isomers provided the ligand assortment does not contain like ligands. 
Because of the equation ~xZo~'= -f ix,  for any element %$ of the coset of 9l 
in 6,  each coefficient in fi#zL can be replaced by the negative coefficient of a 
corresponding enantiomer; if all coefficients of ~ are real, fix~L can therefore 
be written with positive coefficients which may be interpreted as concentrations 
of the components of an isomeric mixture. Because the application of zoo' on 
fix~L changes the sign of all coefficients, the condition fix~ ~ 0 is necessary and 
sufficient for the existence of non-racemic mixtures ~L or ~L. fix~ will be 
referred to as the chiral component of the ensemble operator ~. An ensemble 
operator will be called chiral if fix~ ~ 0. Extension of the ensemble operator 
concept to elements of the group algebra with complex coefficients is formally 
permissible, making possible the formulation and solution of our problem in 
terms of the language and methods of representation theory. 

A chirality function ~b(IL ) is, by definition, invariant under a reorientation 
of the molecule which effects a symmetry operation of the skeleton. This 
behaviour expressed in terms of the site numbers, corresponds to invariance 
under the operator fin. Since ~b(lL) changes sign under reflections of the molecule, 
we can define a chirality function by means of the equation 

~x q~(lL) = q~(IL), 

where ~z is an operator corresponding to fix, but operating on functions. This 
definition assures that ~b(IL ) transforms according to the chirality representation 
F x of the group 6. For an isomer aL, the chirality function q~(]aL) has the same 
value as another function ~b(a]L) of the original molecule: 
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There are a number of qualitative requirements on a chirality function for a 
molecular class which must be fulfilled if the function is to give a satisfactory 
description of pseudoscalar observations on chiral molecules. By means of the 
present formalism, as derived in [10], these requirements can be collected and 
expressed by .a single physically realistic property of the function for isomeric 
mixtures. 

A linear combination of functions q~(o-[L), with ~r~ 6, ,  is related to the 
chirality function for a corresponding isomer mixture YL as follows: 

~ a(~r)r y'fi(~rj)4,(~rjlZ ) ~ ~(crj)q~([crjL)= ~ a(cr)q~(l~Z ) . 
~ze~n j j a ~ n  

Thus, seemingly completely different states of affairs for molecules and isomer 
mixtures lead to results which are reciprocally related. It is desirable that a 
chirality function not vanish for all chiral molecules in which certain numbers of 
identical ligands are prescribed, i.e., for molecules possessing a certain "active 
ligand partition". It is also desirable that a particular type of chirality function 
for a molecular class remain useable when the frame is continuously distorted 
into a frame of higher symmetry without altering the number of sites or at any 
intermediate point decreasing the symmetry. These and similar, seemingly 
trivial properties are not automatically present in the great majority of cases if 
functions of the usual type are used. Such properties are all encompassed in a 
property which we have named "qualitative completeness" (,,qualitative Voll- 
st~indigkeit", cf. [101), a concept which may be defined as follows in terms of 
isomer mixtures: 

A chirality function for molecules of a certain class is called qualitatively 
complete if there is no nonracemic isomer mixture for which the function is 
identically zero, independently of the nature of the ligands. 

This definition remains meaningful for the extended concept of isomers, 
hence for molecules with chiral ligands; the reasons for utilizing qualitatively 
complete chirality functions are the same as before. The following mathematical 
formulation is equivalent: 

A chirality function qS([L) is qualitatively complete if it gives rise to'"regular" 
I-9] induction from ~ to 6, .  

Or in other words" 

The functions ~b(alL)'for a c  6 ,  form a basis for a representation F of 6 ,  
which, on decomposition into irreducible components rr, contains each r r 
exactly as many times as the chirality representation F z is contained in F r. 

If we denote this number for F r by zr, then we must have 

r = Z z y r .  (2) 
r 

As the treatment of the achiral ligand case has shown, this property expresses a 
structural aspect of the chirality phenomenon for a molecular class which 
furnishes much relevant information. A great deal of this information (such as 
chirality numbers, statements about active ligand partitions, and so forth) is in 
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practice - and sometimes in principle as well - expressible only in terms of 
special properties of the irreducible representations of 6, .  Among these special 
properties are the one-to-one correspondence between irreducible representa- 
tions and so-called Young diagrams, Young operators, and a newly discovered 
lattice structure for Young diagrams. In the generalization to the group ~ ,  it is 
thus worthwhile to seek corresponding relations between representations and 
diagrams, and a corresponding lattice structure. It is equally desirable to 
formulate corresponding approximation procedures which lead to qualitatively 
complete chirality functions. 

m 

2. Properties of the Group 6 .  and Its Representations 

In this Section we state without proof some properties of the ~ ,  which we 
shall need. Proofs of statements in subsection 2A are to be found in the 
mathematical literature. Since this literature is somewhat inaccessible to the non- 
mathematician, we give these proofs in Appendix 1. 

A. The Group ~,, Some Subgroups, Its Youn9 Operators and Partition Diagrams 

A class of conjugate elements in the group 6 ,  is known to be characterized 
by the cyclic structure of the permutations, i.e., by the type of cyclic permutation 
factors into which the permutations can be decomposed such that each of the 
numbers 1, 2 .... occur in one and only one of the cycles. Like the decomposition 
of a certain permutation into cycles, a certain decomposition of n into a sum of 
integers denoting the cycle-lengths is representative for a class of conjugate 
elements. Such a partition of n, on the other hand, may be visualized by the 
lengths of rows in a partition diagram. A partition diagram of order n consists of 
n boxes arranged in rows and columns such that the number of boxes in a 
column or row does not increase if going from left to right or from top to 
bottom, respectively. In the case of n = 10, for example, one of the classes is 
denoted in three equivalent ways in Fig. 1. 

An element of ~,, is a product of a reflection operation z and a permutation 6, 
which may be assumed written in cyclic form. Moreover, since each site reflection 
z~ commutes with permutations not involving site (]), we may reorder the factors 
so that each cyclic permutation is followed immediately by reflections on sites 
involved in the cycle. Thus, each element of ~ ,  can be expressed as a product of 
commuting operations, each of which consists of a cyclic permutation among q 
sites followed by reflections on some of these sites. If the number of these reflections 
is even, we call the cycle even and denote it by q(+); if the number of reflections 
is odd, we call the cycle odd and denote it by q(-). It has been shown [11], and is 
also proved in Appendix 1.A, that this indexed cyclic structure determines the 

(...)(...)(..)(.)(.) ~ (3,3,2,1,1) 

Fig. 1 
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( ..-1(+1[.-. )(-11-. 1(-11 �9 1(+11.11+) 13 I+I ,I 1+) ,1 (+1 ,31-1,21-11 

Fig. 2 
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classes of ~ , :  two elements are mutually conjugate if and only if they possess the 
same indexed cyclic structure. Thus, a class of ~ ,  may be represented by a 
partition of n into a sum of integers indexed by (+)  or ( - )  respectively, or 
equivalently by a two-part diagram of order n, consisting of two ordinary 
diagrams, a "plus" part of order n (+), and a "minus" part of order n (-). Figure 2 
shows three equivalent ways of representing one of the classes of ~1o. We will 
also sometimes omit the signs, separating even and odd cycles by a semicolon. 
In this notation, the class of Fig. 2 would be denoted by (3, 1, 1 ; 3, 2). 

In Ref. [10], we drew much advantage from the fact that, in the case of ~, ,  
there is also a one-to-one correspondence between the set of all possible 
diagrams of order n, ~(~), and the irreducible representations F~ of ~ , :  

Fr ~-~7 (r) . 

As we shall see presently, a precisely analogous correspondence holds 
between two-part diagrams ~(~) of order n and irreducible representations 
fir of ~n: fir of ~n: 

f f  r~--~ (r) . 

A two-part diagram whose n boxes are filled in any order with the symbols 
1, 2 . . . .  , n (which may be thought of as representing the numbered sites) will be 
called a (two-part) tableau of order n 2. A tableau in which the numbers appear 
in their natural order when one reads first the plus part and then the minus part 
as in a book, each row from left to right and the rows from top to bottom, will 
be called the book tableau. For each tableau 7 (r) belonging to the two-part 
diagram ~(r), we can define some particular subgroups of ~, ,  as follows: 

Let 91 (r) = 9.1 (~+) x 9.W ) be the subgroup of ~ ,  containing all those permutations 
which effect only rearrangements within the rows of both component tableaux 
t ~* +) and t (' -) in a tableau g(*) of p(r) and ~(') = ~(r+) x ~3 (~ -) be the corresponding 
subgroup of permutations within columns. 

We will sometimes denote an arbitrary member of 9/(*+) by e+, one of 9W -) 
by ~_, with ~ (without a subscript) denoting an arbitrary member of 91 (r). fl will 
play the analogous role for ~(~). 

Let 3; (r+) and 3;(~-) be subgroups of 3; containing all site reflections in t (~+) 
and t (r-) respectively, and consisting of elements z +, z_. 

With the semidirect products 3;(~+)v 91 (r+) and 3;(~-)v ~(r-)  being direct 
products of groups ~v  for each row in the plus- and each column in the minus- 
diagram respectively we get the needed subgroups C~ (~) and ~(*) of ~ ,  according 

2 The definition of tableau given in Ref. [10] is different from the one used here. The present 
definition corresponds to normal usage, and to the requirements of the present article. 
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to the following definition: 

~(') = 23 '+) v 9.W +) • ~( ' - )  and ~(~)= ~('+) • ~3 (r-) v 2:('-) . 

We note that ~(") and ~(~) have only the unit element of ~ ,  in common, 

~(r) ~ ~(~) = e. 

We define the "alternating representation" of ~(r) as the one having the 
character - 1 for odd permutations and for single site reflections. Therefore an 
element cr of ~(~) has the character (+  1) if both the permutation and the number 
of site reflections are even, or both odd, otherwise it has ( -  1). 

The projection operators for the identity representation of ~(~) and for the 
alternating representation of ~(~) which we need are 

~(~)= [('+)~(~+)~(~-) and ~(~)= g(r-)~(r-)~(,+). 

The factors, which are commutable, are defined as follows: 

1 1 1 

1 1 1 
- - -  E E [I 

~(r+) 1~(~+)1 o~(~+ l~(r-)l 12;(~-) l ~,~(~_ ) ~ e ~ (  r -  ) ) 

where e~ = + 1 if v is even and eo = - 1 if v is odd. 
These operators may be combined to define the Young operator 

associated with the tableau in question. If the Young operator belonging to the 
book tableau is denoted by ~(b ~), then any other Young operator belonging to 
~(') may be expressed as 

~ ) =  o-~([ )~-~ 
with a properly chosen o-. 

The Young operators possess the following properties, proved in Appendix 1.B: 
Each Young operator is, apart from a constant coefficient, a primitive 

idempotent projecting onto a single component of an irreducible representation 
of ~, .  Young operators generated by tableaux belonging to the same two-part 
diagram project onto equivalent irreducible representations, those from different 
diagrams onto inequivalent ones. Thus, the correspondence 

~r~__ + ~(r) �9 

is made precise by the statement that Young operators belonging to 7 (~) project 
onto the irreducible representation F~. All projection operators onto F r may be 
expressed linearly in terms of the ~(r) and products ~(~)' o-~ ("). Moreover, since 
the number of different two-part diagrams is obviously equal to the number of 
classes, and hence to the number of irreducible representations, of ~, ,  we know 
that we obtain all irreducible representations in this way. 
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We will also need another subgroup of ~. ,  called 6'., which contains both 
and 6 .  as subgroups. It consists of all pure permutations, as well as 

t0 = ~1 'c2" "'c., and products of the two, and may be defined as the direct product 

6 ' . = 6 .  x3;  0 where ~ o = { e , % } -  

Because the element % commutes with all permutations, classes of conjugate 
elements are the classes in 6 .  and those arising by multiplication with %. 
A characterization of classes may be given therefore by single diagrams as for 
6. ,  but marked with an additional index distinguishing a class with the factor -c o 
from a class without this factor. 

Because the subduction from an irreducible representation of 6'. to the 
subgroup 6 .  gives rise to an irreducible representation F~ of 6 .  and because the 
subduction to the subgroup 3;o leads to a multiple of either the identity or 
alternating representation we can denote the irreducible representations of 
6'. by Fro and Ft.. The corresponding notation for diagrams with an index g or u 
yields the one-to-one correspondence between irreducible representations of 
6'. and diagrams with n boxes 

Fro*-+7 (~~ , Fru+-* 7 (ru) . 

Corresponding Young operators follow from those defined for the irreducible 
representations of 6n according to 

~(~0) = �89 + t0) ~(~) and ~(r") = �89 (e - %) ~(~) 

and the definition ~J(~)= ~(~)d(o where a (r) and ~(r) refer to a single diagram 7 (~) 
with n boxes. 

B. The Regular Induction from 6 n and 6'.  to ~ .  

As we saw in Section 1, the construction of a qualitatively complete chirality 
function requires the determination of the integer coefficients z r of formula (2). 
zr is the minimum number of different chirality functions transforming like 
linearly independent vectors of an irreducible representation space for ff~ which 
we need, properly chosen as additional components in a qualitatively complete 
chirality function for each r. z~ is simultaneously the number which tells us how 
often the chirality representation is contained in fir. If character tables for ~ .  
are available, z~ can be determined in a straightforward manner. If not, the 
characters may be calculated by means of the formula derived in appendix (1.B, 
Theorem 4). Even for relatively low n, however, this procedure becomes extremely 
tediousl The induction is much more easily carried out by means of another 
procedure, which we now proceed to explain. It is based on the knowledge of the 
readily available characters for 6'. and consists of a decomposition of the 
induction process into the induction from ~ to 6'. and from 6'. to 6. .  

If the chirality representation is contained XI times in the irreducible 
representation F; of 6'. and if F/' is contained Y~r times in fir of ~. ,  then z r can be 
determined by the formula 

! 



278 A. Mead et  al.: 

As the character tables of 6', allow us to determine the X;, our problem reduces 
to finding the Ytr- For this purpose, we first note that a two-part diagram 7 (r) is 
characteristic not only for the irreducible representation fir of ~, ,  but also for the 
irreducible representation Fr + x F,_ of the direct product group ~,~r+~ x ~.~r- 
because 7 (r+) and 7 ('-) are the diagrams for the irreducible representations Fr+ 
and F~_ of the factors ~,~r + ~ and ~,~r-~. 

In Appendix 1.C we prove the following theorem: 
The representation of ~ ,  which we get by means of the regular induction with 

an irreducible representation of ~,~,+~ x ~,~,-~ associated with the diagram pair 
~t') is the same as that obtained by subduction of fir to ~,.  

Because the induction from ~,~+~ x ~.c~-~ to ~ ,  is known [5a, 7], we need 
only reverse this process to induce from 6 ,  to ~, .  By a slight modification we get 
the step we want, the induction from 6', to ~, .  

The representation [Fr] ~" of ~ ,  regularly induced by F~ of ~ ,  is constructed 
as follows �9 

We fill a single diagram 7 (~) containing n boxes with ~ symbols 1, tr 2 
symbols 2,...~c t symbols t subject to the conditions tc x >~c2>.. .K t and 

/ ' / .  
/s -I-/s "~ " "  ~-/s ~ ~ m s u c h  a w a y  t h a t  

1) No two symbols of the same kind may be in the same column�9 

2) When all the boxes containing the symbol t are removed the remaining 
boxes constitute a diagram; it must remain so when all boxes with t and t -  1 are 
removed etc. 

3) Reading from right to left along the rows, beginning with the top row and 
working down, one must get a "lattice permutation" of 111...22 .... That is, at 
each point one must have read at least as many l's as 2's, as many 2's as 3's, etc. 
For each way of doing this, the induced representation contains an irreducible 
representation whose (+)  diagram is the diagram of empty boxes and whose ( - )  
diagram has rows of lengths tc t, K z . . . . .  rct. If the plus and minus diagram are of 
different order, the induced representation also contains a second irreducible 
representation corresponding to a two-part diagram in which the plus and minus 
diagrams are interchanged, otherwise not 3. 

The induction from 6', to ~ ,  is the same, except that the induced diagram 
pairs reduce to those with an even or odd number of boxes in the negative part 
according as the inducing representation is Fro or F~,. 

In Fig. 3, we give an example of the induction from ~7 to ~7. 
�9 t With reference to the inducing process from ~7 we must distinguish between 

the indices of the inducing representation 9 or u and consequently ignore 
induced diagram pairs with an odd or even number of boxes in the minus 
component. Thus, referring to Fig. 3, if the inducing representation of ~:7 is 
(3, 2, 2),, we obtain only the representations under column (u) in the figure; 
if it is (3, 2, 2)0 we get only those in column (g). 

3 If the two parts are of the same order, but are not identical, there is always another allowed 
way of filling in the symbols which leads to the diagram pair with interchanged signs. The 
prescription as stated prevents this from being counted twice. 
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Symbol Distribution Induced Representotions 

(+) (-1 

(+l [ ~  1+1 [-I 

I+1 (-1 

c, 

[+1 (-1 (+} I - |  

e, 1 ~  I ~  ~ ~ 1 ~  

(+} (-1 t+~ ~-} 

f+l 1-} 1+) (-1 ,, F Z  Z P  

f-) [+1 I-) 

" Z ZH 
Fig. 3 

C. Remainder Diagrams and the Transfer Condition 

In Ref. [10], the investigation of active ligand partitions, and of other 
questions of physical importance, was greatly facilitated by studying the 
properties of the "partition lattice". In the present subsection, we lay the 
groundwork for an analogous treatment for the case of chiral ligands. 

For single diagrams of order n, the partition lattice provides a very simple 
answer to the following question: 

Consider two single diagrams of order n, 7 (~) and y (~ the boxes of the latter 
being filled with symbols 1 in the first row, 2 in the second, etc. Is it possible to 
transfer all the symbols into the boxes of y(r) in such a way that no two like 
symbols appear in the same column? ("column condition", or "C-condition"). 
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When this transfer is possible, we will say that the transfer condition (T-condition) 
is satisfied. 

The answer to the question turned out to be: The T-condition is satisfied 
if and only if 

?;(r) D y~t) 

(y(') is greater than ?(z)). The "greater" relation may be defined in three 
equivalent ways, viz: 

i) ?(r) D 7 ~) if and only if 7 ~) is obtained from 7 (~) by moving boxes downward. 
ii) Let vj denote the length of the j ' th row of a diagram and 

i 

O i :  Z Yd. 
j = l  

Then ?~") D 7 (~) if and only if 
Ol r) ~ O} l) f o r  a l l  i. 

iii) Let #j denote the length of the j ' th column of a diagram and 

i 

Ui : 2 ~J " 
j= l  

Then 7 (~) D 7 (z) if and only if 

u} r)_<_ ul l) for all i. 

It is proved in Ref. [10] that these three definitions are equivalent, that the 
partial ordering-of diagrams so defined is a lattice, and that this ordering has the 
stated relation to the T-condition. 

As will become clear in the next Section, the appropriate generalization of 
the T-condition for our problem is the following: 

Consider two two-part diagrams of order n, y~r) and y{~), the boxes of the 
latter being filled with symbols 1 in the first row, 2 in the second, etc., with the 
symbols in the minus part distinguished by primes. The "generalized T-condition" 
is said to be satisfied if all the symbols can be transferred into the boxes of 7 (r) 
in such a way that 

1) No two like symbols appear in the same column of the same part of y~r) 
(primed and unprimed symbols being counted as different for this purpose); and 

2) All the unprimed symbols are in the plus part of y~) (though primed 
symbols may be in either part). 

We now consider what properties the diagrams must have in order to 
satisfy this condition. 

First, the plus part of y~) must be able to accommodate all the unprimed 
symbols with no two like ones in the same column, though some boxes may be 
left unfilled. This means that the first row of 7 ~+) must be long enough to 
accommodate all the l's, the leftover boxes in the first row plus those in the 
second row enough for the 2's, etc. Continuing in this way, by reasoning exactly 
analogous to that used in Ref. [10] for single diagrams, one concludes that, to 
fulfill this part of the T-condition, it is necessary and sufficient that 

o! r+) _-> o} 1+), all i. 
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Second, there must be enough different kinds of primed symbols to fill the 
first column of 7 ~r-), the unused ones plus those of which there are at least two 
must be enough to fill the second column, etc. Again, by reasoning analogous to 
that in [10], one concludes that this part of the T-condition is satisfied if and 
only if 

ul r-) < u} l-), all i. 

The above two conditions are necessary, though not sufficient, for the 
T-condition. By means of them, we can define a "greater" relation for two-part 
diagrams which is analogous to the known one for ordinary diagrams, as 
follows: 

We say that ~(r)~ ~(~) (~r) greater than ~t)) if 

o} ~+) >o} l+), all i ,  
and 

u!'-) < u! z-), all i. 

A second, equivalent, definition is: ~(r) is greater than ~(z) if and only if ~z) can 
be obtained from ~(~) by moving boxes from the plus to the minus part, and/or 
downward within each part. 

It is shown in Appendix 2.A that this partial ordering defines a lattice. 
If 7 ~') ~ ~),  then the above considerations show that we can transfer all the 

unprimed symbols into 7 ~r+), with no two like ones in the same column and 
n , z = n ~ ' + ) - n ~ + ) = n ~ - ) - n  ~- )  boxes remaining empty. Also, we can fill 7 ~-) 
with primed symbols, no two like ones in the same column, with n,~ symbols not 
being used. In general, this partial transfer can be done in several different ways. 
The T-condition now will be satisfied if we can transfer the nr~ remaining unprimed 
symbols into the n,~ empty boxes with no two like symbols going into the same 
column. We can express this condition as a T-condition for ordinary diagrams 
as follows: First, form a diagram ~/(r~+) of order nr~ whose column lengths are the 
numbers of empty boxes in the columns of 7 ~'+). Form another diagram 7 ('~-) of 
order n,~ whose row lengths are equal to the numbers of unused primed symbols 
of each kind. These diagrams will be called remainder diagrams. In terms of 
them, the question of transferability of the unused symbols becomes: "Can all 
the symbols be transferred from 7 ~'t-) to 7 ~r~+) in such a way that no two symbols 
from the same row of 7 ~rl-) go into the same column of 7~t+)? " This, however, is 
just the ordinary T-condition for 7 ~- )  into 7 (r~+), and we know that it is 
satisfied if and only if ~(r~+) ~ 7 (~-). 

The remainder diagrams, however, are not uniquely determined, as the 
partial transfer of the symbols can in general be carried out in many ways. 
To satisfy the T-condition, we need only one way of doing the partial transfer 
which will make 7(~t+)D7 ~rz-). Since the two parts of the partial transfer 
are independent of each other, we can transfer the unprimed symbols into 7 (~+) 
in such a way as to make 7 (~+) as large as possible, and similarly transfer the 
primed symbols so as to make 7 trz-) as small as possible. The possibility of doing 
this depends on the existence of a unique "largest remainder" for the transfer 
of the unprimed symbols, and a "smallest remainder" for the transfer of the 
primed symbols. In Appendix 2.B, it is shown that such unique largest and 
smallest remainders exist, and that they are constructed in the following way: 
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1) Largest Remainder: Given two diagrams 7 (a) and 7 (b), with o!")__>o} b) for 
all i, the boxes in the first row of ?(b) being filled with l's, the second row with 2%, 
etc. Transfer the symbols into the boxes of 7 (a) one at a time, in any order, 
placing each symbol as far down as possible subject to the condition that it 
does not go into a column already occupied by a symbol of its own kind. If there 
are two or more boxes satisfying this condition and equally low down, choose 
the one farthest to the right. When all the symbols have been transferred, the 
unfilled boxes will be in diagram form without further rearrangement, and this 
diagram will be the largest remainder 7max(7 {a), 7(b)). 

The question of the smallest remainder 7 (rz-) takes a completely analogous 
form if we reformulate it somewhat. Instead of transferring the symbols from 
7 (~-) into 7 (r-), we imagine that the boxes of ~,(~-) are transferred into 7(~-), with 
no two from the same column going into the same row of 7(~-). The symbols 
remaining uncovered by transferred boxes form the remainder. It is obvious that 
this is equivalent (as far as forming the remainder is concerned) to the formulation 
in terms of symbol transfer, and that it differs from the situation of (1) above 
only in the interchange of the roles of rows and columns. The construction of the 
smallest remainder is therefore carried out as follows: 

2) Smallest Remainder: Given two diagrams, 7 (a) and 7 (b), with u}a)> u! b) for 
all i, and with the first column of 7 (b) filled with symbols 1, the second with 2's, 
etc. Transfer the symbols into the boxes of 7(") one at a time, in any order, placing 
each symbol as far to the right as possible consistent with the condition that it 
not go into a row already occupied by a symbol of its own kind. If there are two or 
more allowed boxes equally far to the right, choose the one farthest down. When 
all the symbols have been transferred, the unfilled boxes will be in diagram form 
without further rearrangement, and this diagram will be the smallest remainder 
~3mi n (~)(a), ~(b)). 

Examples of largest and smallest remainder construction are shown in Fig. 4. 
From the above discussion, we see immediately the criterion for satisfying the 

T-condition for 7 (t) into 7('. It is satisfied if and only if 

1) y(') D ~(l) and 

2) 7max(~ (r+), ~ ' ( / + ) )  3 ~)min(~ ;(/-), ~ ( r - ) )  . 

We note that the T-condition is not transitive. For example, referring to 
Fig. 5, we see that the T-condition is satisfied for 7 {3) into 7 (2), and for 7 (2) into 
7 (1), but not for 7 (3) into 7 (1). 

I I 

I '  

7' 

Fig. 4 

2 2  
11 7mo~ ('/,Y') 

,2,11 1 
312111 
2111 ~ . . . 
1 l  

? r N n  ('~, '~') 
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(+1 I+11-1 (+~ I-) 

~(1) ,2(2) 7(a) 
Fig. 5 

In the case of ~',, we have the partition lattice for ~ ,  twice, one containing 
all the diagrams with the index 9, the other those with index u. If we allow 
transfer between diagrams no matter what the index, the T-condition reduces to 

7(~)D 7 (~) neglecting the indices g, u. 

3. Active Ligand Partitions 

According to the statements in the end of Section 1 and the technique 
developed in Section 2 we can construct qualitatively complete chirality func- 
tions for classes of molecules with chiral ligands. Approximate ansaetze for 
such chirality functions according to the first and second methods, of Ref. [10], 
shortened ansaetze for subclasses, specifications of classes according to the 
minimum-interaction between ligands needed for physical pseudoscalar pheno- 
mena, and other related matters, discussed in [10] for achiral ligands may be 
best understood on the basis of a discussion of "active ligand partitions" and 
their representation in the partition lattice. Analogous results in our case will be 
found discussing these questions with reference to chiral ligands. A ligand 
partition specifies the number of each type of equivalent ligands. For achiral 
ligands, equivalent means identical in its configuration, for chiral ligands 
equivalence is defined as including ligands which are identical or enantiomers. 
The reason for this definition will become obvious later. A ligand partition 
according to this definition may be characterized by a two-part diagram ~)  
where the numbers of boxes in rows correspond to the numbers of equivalent 
ligands, achiral ligands being represented by ~(~+) and chiral ones by y~-). We 
denote with L (z) an ordered molecule with a ligand assortment belonging to the 
partition ~(~). 

We call a partition ~(~) active if there is at least one chiral ordered 
molecule L (~). It is said to be active with respect to an ensemble operator a if 
there is an L (~) such that ~ L ~) is not racemic. Recalling that negative coefficients 
in ~ are to be interpreted in terms of positive concentrations of enantiomers, 
we see that the statement that the mixture is not racemic means formally 

,~x~ L ~z~ ~ O, 

i.e., the total coefficient of each particular ordered molecule in ~ L  ~z) is 
formally not equal to zero. Conversely, the mixture is racemic if 

/~x~ L (z) = 0. 

Each ensemble operator ~ can be expressed as an achiral component plus 
a sum of terms of the form/~x~(')~, where 7 ~) is the projection operator onto 
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an irreducible representation F r with z r r 0. We call ~tz) "Fr-active" if there is 
an L ") with p z ~  (~) L "~ # 0. Obviously, ~(0 is active with respect to ~ if and only 
if it is Yr-active for some F~ with/~zTC')~z # 0. Equally obviously, it is active if 
it is F~-active for some Ft. Hence, essentially all questions about active ligand 
partitions are answered if we can decide when a partition ~)  is F,-active. 

We note that an ordered molecule L ~) is left invariant by the following 
operations: 

(1) Permutation of any two identical ligands. 
(2) Permutation of any two enantiomeric ligands followed by site reflections 

applied to both. 
(3) Site reflections applied to achiral ligands. 
Since the projection ~(~) can be built up out of the Young operators ~(r), 

we can study the question of F,-activity by studying the effect of the Y7 (~) 
(considered formally as ensemble operators) on L "). Consider an arbitrary one 
of the Y7 ('), belonging to the tableau ~). The operator ~(~) antisymmetrizes with 
respect to the following operations: 

(1) Permutation of any two ligands located on sites in the same column of 
~-~. 

(2) Site reflection on any site located in r 
(3) Permutation of any two ligands located in the same column of ~(r) 

followed by site reflection applied to both. 
Thus, if L ") has any two identical or equivalent ligands on sites in the 

same column of t-(~), or any achiral ligand in a site located in F-) ,  then ~(~) will 
antisymmetrize with respect to at least one operation which leaves L ~ 
invariant, and we have ~(")L ~) = 0. If this is not the case, ~(~)L ~z) r 0. 

Thus, there will be an L (l) with ~J(~)L (~) # 0  if and only if it is possible to 
distribute the symbols from ~tt) among the sites in such a way that no symbol 
from ~/(~+) goes into a site in F -) and no two symbols from the same row of ~(z) 
go into sites in the same column of ~r). This, however, is just the T-condition 
for ~(~) into ~r). If the condition is not fulfilled, we have ~J(~)L (~) = 0 for all ~('~ 
and L ~). If the condition is fulfilled, then for each Y7 (*) there is an L (z) such that 
YT(~)L r # 0. Since/~z cannot be orthogonal to all the Y7 ~), it follows that, if the 
T-condition is satisfied, there is also an L (~) with fizfi~)L(l)va 0, and we conclude 
that ~z) is Fr-active. 

Summarizing, we have found that a necessary and sufficient condition for 
7(~) to be F~-active is that the T-condition be satisfied for p(~) into ~(*), i.e. that 

and 
7max(7 (r+), 7 (/+)) D ]:min(7 (l-), 7(r-)). 

4. ~ -  and ~-Partitions and the Corresponding Decomposition of Chirality 
Functions 

In contrast to the case in which all ligands are required to be achiral, in the 
present case we have chirality functions which are the same for all permutational 
isomers, and which are present for all molecular skeletons. To study their 
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properties, we note that the representation Flu of 6',, whose diagram is shown 
in Fig. 6, always has Zl~ = 1, regardless of the skeleton. For the representation is 
one-dimensional, so z~ cannot be greater than one. On the other hand, the 
representation is symmetric under all s e 6, ,  in particular under those in 9l, 
and antisymmetric under all %~, in particular those in "c0~'~, so it follows 
that it contains F z. Moreover, Flo is symmetric under the elements of ~o~'9l, so 
that always z~o = O. We conclude, then, that there are always chirality functions 
belonging to the totally symmetric representation of ~. ,  all of these belonging 
to F1. of 6'.. We call these functions ~-chirality functions (ligand specific), since 
they arise purely from the chirality of the ligands, and are independent of the 
nature of the skeleton and of the distribution of the ligands among the sites. 

If we define the projection operators 

and 

1 ~ . ~ = ~  }-'~ 
O~n 

then  we can decompose any chirality function into independent components as 
follows: 

O(IL) = ~ ( ~ I L )  + O(~IL) �9 

The functions O(~JL) will be referred to as class-specific, or C~-chirality functions. 
Unlike the 2'-chirality functions q~(cselL), they depend on the nature of the 
skeleton. Because the operator pz~')  commutes with r this decomposition 
is compatible with the decomposition according to representations of ~,.  

The designation of a chirality function as 2 '  or ~, it is to be noted, refers to 
the representation of 6', to which it belongs, not to that of ~,.  The two, 
however, are not independent. According to the induction procedure of 
Section 2.B, the representations of ~n induced by Flu are: 

(n - 1 ; 1), (n - 3; 3) ..... 

There is always one 2'-chirality function belonging to each of these representa- 
tions, and there may be qf-chirality functions as well, depending on the 
skeleton. Chirality functions belonging to other representations are always 
~-chirality functions. 

Thus, for any F r with zr r we may express z~ as a sum 

z~ = z~ + z~. 

For the representations listed above, we always have z f =  1, z~= z , - 1 .  For 
all other representations, we have z f  = 0, z~ = z,. 

It is easy to see that ~-chirali ty functions vanish identically if the ligand 
assortment is racemic, i.e., if the ligands are all either achiral or pairwise 
enantiomeric. 
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5. Chirality Numbers 

By means of the T-condition, we may easily determine maximum numbers 
for identical or equivalent ligands and minimum numbers for types of 
nonequivalent ligands in molecules with Fr-active ligand partitions ~t). This 
means, if any one of these numbers is exceeded or not reached respectively, then 
q~(7(r) lL (l)) vanishes even if the molecule is chiral and the isomer mixture 7tr)a~L 
becomes racemic. 

We need only the relation y(r) 9 y(g) to derive the following relations for the 
lengths of first columns and rows. 

Oi r + ) ~ 0(~ + )  U(1 r -  ) ~ U ( l -  ), O(lr + ) -~ 0(1 r -  ) ~ 0(~ - ), max(u{(+), u(1 r-)) ~ u(1/+) + u(1 / -) 

All these limiting numbers are attained in at least one r,-active partition; the 
first and the second inequalities become equalities for ~ ) =  ~)  representing a 
F,-active partition. The third and fourth inequalities become equalities for the 
diagram T {~ whose plus part vanishes and whose minus part consists of the 
columns of 7 (~+) and y<' ) properly ordered. It is active as it is smaller than ~') 
and max(7 Cr+), y~l+))= ~ ) 9  min(~/r-), 7~1-)). Therefore we may conclude that for 
F~-active molecules 

o] ~+) is the maximum number of identical achiral ligands 

o~+) + o~(-J is the maximum number of equivalent chiral ligands 

u~ ~-) is the minimum number of inequivalent chiral ligands 

max (u] ~+), u((-))is the minimum number of inequivalent ligands. 

Each of these numbers occur in at least one F~-active ligand partition. 
By forming the maxima or minima respectively of these quantities, the 

~e extrema being taken over all r with z, r 0, we get chirality numbers which are 
characteristic properties of the frame. It should be emphasized that the condition 
is z~ :;a 0 and not z~ va 0 because the latter would only lead to trivial numbers 
which express the fact that a ligand partition is active for any achiral frame if it 
contains at least one chiral ligand. The non-trivial numbers we want should 
present information about the pseudoscalar properties of the particular molecular 
class in question. We find these "chirality numbers" from the following maxima 
and minima: 

chirality order o + = max {o~ r+)} / 

o max {o~r+)+O~ r-)} 

chirality index u-  rain {u~ r-)} / 

min {max(u(~+{ u~ ~ ))}J 

maxima and minima are to be 

taken over all r with z, ~ ~ 0. 

We call a molecule ~-chiral if its pseudoscalar property depends on the 
particular frame with its sites and not only on the composition of the ligand 
assortment, i.e.; if it possesses a nonvanishing Cg-chirality function. Correspond- 
ingly we call a ligand partition Cg-active if there are Cg-chiral molecules 
belonging to this ligand partition. Now we may formulate the meaning of the 
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chirality numbers as follows: 

o + is the maximum number of identical achiral ligands which may be 
present in a Cg-chiral molecule. 

o is the maximum number of equivalent ligands which may be present 
in a ~-chiral molecule. 

u-  is the minimum number of inequivalent chiral ligands which must be 
present in a Cg-chiral molecule. 
is the minimum number of inequivalent ligands which must be present 
in a Cg-chiral molecule. 

In a "chiral class" which by definition contains chiral molecules with 
exclusively achiral ligands, all these chiral molecules are Cg-chiral. In an 
"achiral class" the chirality is only due to 5r Therefore, we have for 
any class 

u = 0 .  

For chiral classes we have proved in Ref. [10], under the restriction to achiral 
ligands, that the chirality order has the lower limit n -  3 and the upper limit 
n which characterizes chiral skeletons. If chiral ligands are admitted we have 
the relation o > o + and therefore the same limits for o. 

n - 3 ~ o ~ n  

6. Explicit Forms of Qualitatively Complete Chirality Functions 

A. General Remarks 

The general form of a qualitatively complete chirality function is 

zr:~O 

r 

where the irreducible representation Fr is induced zr-times by the component 

According to Ref. [10], Section 2, we may achieve the required property of 
c~(f(~)lL ) starting with a set of functions ~o~r)( ] L), ~ = 1, 2,. . .  t, for which ~(~)~(~~ I L ) 
does not vanish. Let the choice be such that the operator ~(~) does not 
annihilate ~(~)([L) and denote the resulting projection with ~(~r)(JL). In this 
section, Young operators without subscripts refer to the book tableau. 

~ = ~p~)(]L) and ~)(~IL) = ~ ~ Ip(er)(]o'L). 

Then, a component ~b(~r)lL ) with the desired properties is constructed by a 
sum of expressions 

~x~v~r)(olL) with properly chosen ~ and ~ e ~ 4 .  

These expressions, being chirality functions as well, are obviously again linear 
combinations of ~o~)(o-[L) with a given ~ and some elements a ~ ~',. ~v~r)([L) refers 

4 Note that even here the group elements may be chosen to be pure permutations, This follows 
from the form of the projection operator/~(~) where the sum index is also confined to elements of ~ . .  
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to the book tableau of ~c~) and the ordered molecule (1) of Sect. 1. It transforms 
under site reflections as follows: 

= -~ - t ] ) ( r ) ( [L )  if 1 < i < n  C~+) 
(P (~) qJ~)(IL) 

= - ~ p ~ ) ( ] L )  i f  n {~+) + 1 < i < n .  

Without loss of generality we may define a pseudoscalar function K(#/)for 
single ligands, i.e., 

(9 (z3 = = - 

and write ~p~")(IL) in the form 
~P~r)(IL) = g(f , , ,+)+0"" g(f,) ~P~r)(IL) 

where ~r)([L) satisfies the relation ~{r+)~'+)d{'-)a~'-)~')([L) = ~')(IL) and is 
symmetric under all site reflections. From ~7{')0~')(]L) = ~p~')([L) it follows that 
the same decomposition may be chosen for c~')(IL) 

i = n ( r + ) + l  

c~)([L) being invariant under site reflections and ~tr+)~{~+)~{~-)~'-)~)=~"). 
Since the above decomposition is always permissible we shall use it for the two 
approximate procedures-of [10] which will be generalized in Section B and C. 
Two further remarks are worth making beforehand: 

1) ~(#~) may, in principle, be chosen quite arbitrarily, though a particular 
choice may recommend itself in certain cases or for specific purposes. There is 
no need to use the same tr for different equivalent or inequivalent representations 

2) Without loss of generality we have expressed the pseudoscalar l igand 
properties by one pseudoscalar ligand parameter ~. On the other hand, 
~p~)(~..-#,), which is a function of the scalar properties of the ligands, does 
not necessarily depend on values of single ligand parameters only. Rather, this is 
an additional postulate, which we use for an approximate type of qualitatively 
complete chirality function as outlined in subsection B. 

B. First Procedure: Polynomials of Lowest Degree 

We use the form (1) for ~o~r)(lL) and choose N~r)(IL) to depend only upon 
values of a one-parameter achiral property of the single ligands 2(Ei) and being 
a polynomial of lowest degree in 2((i) such that the operator ~{r+}~(,+)~{~-)~t~-} 
does not annihilate ~)(IL) .  Because this operator is the product of two 
commuting operators ~ r + ) ~ + )  and ~cr-)~{~-~, for single tableaux of7 ~+) and ~c~-), 
we may choose N~or)( [ L) as in Ref. [10] and we choose ~to~)( [ L ) to be a polynomial 
of lowest possible degree in the 2(Y~). For this purpose we start with a polynomial 

c o ( l L ) =  ( I  
i = n ( r + ) + l  

which is of lowest degree 9 {~) in 2((i) such that ~7{~)~o~r)(lL) does not vanish. The 
operator ~{~+)~t~+)d(r-)~{'-) in the equation d(r+}~(~+)gt'-}~{~-)c~)(lL)= ~p~')(IL) 
is the product of two commuting Young operators #(r+)a{~+) and ~{"-)~{'-} for 
the single tableaux of 7 (~+) and 7 ~r-). Therefore we may choose N~)([L) as in 
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Ref. [10] as a monomial in 2((i) where each 2(fi) occurs in the (i - 1)th power if i 
is the row number in 7 ('+) or ~(~-). As we concluded from [10], this is a monomial 
of lowest degree which does not vanish when ~+)z~<~+)d('-)z~ ~'-) is applied. 
Its degree is 

g (r)= ~ ( i -  1) (vl ~+) + vl~-)). 
i = i  

The application of ~ on col') leads therefore to the homogeneous polynomials 

~<~)c~r)(IZ) = ~P~)(It) : ~ ~:(f~) FP~)(IL). 
i = n ( r + ) +  1 

They are of degree n <~-) in x and gC,) in 2(f~), and this is also true for the chirality 
functions ~zq~r)(alL) which can be used according to Ref. [113] to construct 
~b ( ~ )  I L) with the required properties. 

Exactly as in [-10], it can be proved that a polynomial of lowest degree 
induces F~ only once. Therefore, we need z~ polynomials depending upon 
different types of parameters 2 ~1), 2 (z) . . . .  ,2 (~), but the ~(d~) may be chosen to be 
the same. The polynomial of lowest degree depends only upon differences of the 
scalar parameters. This is proved by introducing new variables ~1 =Y~2(fi), 
~2 =2( [0 -2 (~2) , - . . ,~ ,=2( ( , -~ ) -2 (~ , )  and from the fact (which follows from 
the symmetry) that r must occur as a factor of the polynominal if present at all. 
One infers as in [10] that Ca does not occur if the degree is the lowest. We denote  
the qualitatively complete chirality function according to the first method with 
z(IL). 

C. Second Procedure: Linear Combinations of Functions Depending on as 
Few Ligands as Possible 

In this subsection, we do not restrict the number of scalar parameters for 
single ligands, but we postulate that co~r)([L) depends on as few ligands as 
possible, again using the form: 

i=n(r+ )+ l 

This postulate implies a minimum number of [i occurring in ~r~([L). Assume 
~r)([L) depending on h ligands; then it is certainly totally symmetric under permu- 
tations among the remaining n - h  ligands. Because d(r+)a~r+)#~"-)a~r-)~)(IL) 
is antisymmetrical with respect to permutations within columns, ligands which 
do not occur in ~r)(lL) must all be in different columns. From this it follows 
that 

v]r+) + v]~-)> h, 

where, if h denotes the minimum number, the equal sign is to be taken. Con- 
sequently, -~r) "~+) ,,~-) o~)( I L) depends there- toQ (IL) depends upon at least n -  ~ - ~ l  , 
fore upon h (r) = n - v] r +) ligands and the chirality functions ~z q~') (~ I L) are linear 
combinations of functions depending upon h ( r ) = n - v ]  "+~ ligands each. They 
can be used to construct the components q~(~r)lL) of a qualitatively complete 
chirality function ~(IL) according to the second procedure outlined in Ref. [10]. 
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Because all components of 2(IL) depend on a minimum number k (') of Ei, 
which cannot be decomposed into sums of functions depending on fewer 
variables, k (') is the minimum number of ligands between which interaction has 
to be taken into account in order to describe the phenomenon due to F,. Recalling 
the chirality numbers we conclude: 

k = n - o  + is the minimum interaction between ligands to be taken into 
account in order to describe pseudoscalar phenomena on the class in 
question. Of course, a qualitatively complete description also necessitates, 
in general, components with higher interactions. 
Because of the bounds on o+, the number k has one of the values 1, 2 or 3. 

This is a very useful aspect for general statements about properties of classes as 
pointed out in [10], or for the quantum mechanical treatment of special 
pseudoscalar phenomena such as the optical rotatory power shown in [3] and [4]. 

7. Examples 

Some examples may help to make the derived results clearer. In connection 
with special classes (examples B, C, and D) we give the partition lattices for two, 
three and four sites. The chosen numbering of diagrams is arbitrary but allows 
one to design the representations of 6n correspondingly. With reference to given 
classes, all diagram pairs with z, # 0 are shaded, those for which ~ # 0 have a 
heavy border. The induction from 6', to 6 ,  is presented for all those diagrams of 
6', which correspond to irreducible representations of 6', containing F x. In the 
discussed examples F x is contained only once and the induction from a given U 
to 6 ,  delivers each induced representation of 6 ,  only once as well. Therefore 
these numbers are not mentioned. In example D a representation of 6 ,  is 
induced from two different representations of 6',. The corresponding two 
components for chirality functions are adapted to the originating representations 
of 6',. The advantage of this choice becomes clear from the comparison of the 
Ta and D2e-frame, where one of both components of D2e vanishes in the Ta case. 

A) 2#-chirality Functions 

~-chirality functions are functions transforming according to F1, of 6', 
represented by the diagram (n) (u). The induced representations of 6 ,  correspond 
to the diagram pairs [(n - 1) ~+), 1(-)]; [(n - 3) (+), 3 ~-)] and so on. Because the 
component diagrams have not more than one row, we find with help of the 
derived formulas for the order g(r) of the polynomials and for the minimum 
number h ~*) that cS(IL) according to both methods becomes a constant. Both 
methods lead therefore to identical chirality functions 

{(n - 1) (+), (1) ~-)} ~ ~ ~(di) 
i = 1  / z  

(n)" {(n - 3 ) %  

"-L 
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B) Frame with Two Sites, 
Partition Lattice for ~2 Fig. 9 

1 2 Fig. 7 

(+} 

S 

,~ b'W 
VT-1 - 

Fig. 8 
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1 F-IN 

I 
[+J 

~N 
I 

1+11-1 
3 0 0  

I 
(-} 

a U I Z l  
I 

[-} 
~N 

Fig. 9 

Skeleton Symmetry C s Fi 9. 7, Induction Fig.& 

2(~(~)IL) = Z(~(Z) IL)=  ~(1) - 2(2) 

2(f(~)l L) = ,X (7(5)1L)= ~c(1) K(2) [-2(1) - 2(2)]  

2 (7  (3) IL) = Z(7  (3) IL) = ~(1) + ~(2) 

C) Frame with Three Sites, Skeleton Symmetry C3~ Fig. t0, Induction Fig. 1t, 
Partition Lattice for ~3 Fig. 12 

Z(~m)[L) = 1,2(1) - 2(2)] 1,2(1) - 2(3)]  1,,2(2) - 2(3)] 

~ ( 7 { 3 ) [ L ) = c o ( 1 , 2 ) + c o ( 2 , 3 ) + c o ( 3 ,  1) wi th  co ( i , k )=  - c o ( k , / )  

(7~7~1L) = z ( F ~  I L) 
= ~ (1 )  to(2) [ 2 ( 1 )  - 2 ( 2 ) ]  + ~c(2) to(3) I-2(2) - 2 ( 3 ) ]  

+ K(3)  K(1)  [ ) , (3)  - 2(1)] 

2(7;~4~1L) = Z(7~4~IL) = x(1) + ~c(2) + ~c(3) 

'+' @, i VY--n 

,+ , /  \ 2 
Fig. 10 ' + " '  

s 4 I '-FIl"l 
/ 

(+1(-I 
s B D  

6DF- R 
/ (+} 

" 
7 N ~ aFT-Y] 

~8o ~ 
[ (~) (+} {-} 

c-I F"F-V'I ~ [-'1-1 rq  

Fig. 12 Fig, 11 
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D) Frame with Four Sites, Partition Lattice for 64 Fig. 16 

a) Ske l e ton  s y m m e t r y  D2a Fig. 13, i nduc t ion  / / / / / s haded  Fig. 15. 
b) Ske l e ton  s y m m e t r y  T a Fig. 14, i nduc t ion  \ \ \ \ \ shaded  Fig. 15. 

)~(~(3)[L) = [2(1) - 2(2)] [2(3) - 2(4)] 

)~(~(3)IL) = o)(1, 3) - co(l, 4) - o)(2, 3) + o)(2, 4) 
wi th  0)(i, k) = co(k, i) 

ZI(~(~3)[L) = 2 Ire(l) re(2) + ~c(3) ~:(4)] [2(1) - 2(2)] [ 2 ( 3 ) -  2(4)] 
- [K(1) M3)  + K(2) K{4)] [2(3)  - 2(1)3 [2(2)  --  2(4)]  
- [tc(1) K(4) + to(2) tc(3)] [2(1) - 2(4)] [2(2) - 2(3)] 

21(~(13)[L) = 2[tc(1) ~c(2) + ~c(3) ~c(4)] [0)(1, 3) - co(1, 4) - 0)(2, 3) + 0)(2,4)] 
- [~:(1) ~:(3) + K(2) K(4)] [0)(3,  2) - 0)(3, 4) - 0)(1, 2) + 0)(1, 4)] 
-- [~c(1) K(4) + ~c(2) tc(3)] [0)(1, 2) - 0)(1, 3) -- co(4, 2) + 0)(4, 3)3 
wi th  0)(i, k) = 0)(k, i) 

2(~(9)1L) = Z(~;(9)IL) = [tr - K(2)] [tr - K(4)] 

Z(~(18)lg) = ~c(1) ~c(2) ~(3) ~c(4) [2(1) - 2(2)] [2(3) - 2(4)] 

2(f( lS)[L)  = n(1) tc(2) ~(3) K(4) [0)(1, 3) - 0)(1, 4) - co(2, 3) + 0)(2, 4)] 
with co(i, k) -- co(k, i) 

2(7(7)1L) = Z(~(7)IL)= to(l) [22(2) - 2 ( 3 )  - 2(4)] + ,c(2) [ 2 2 ( 1 ) -  2(3) - 2(4)] 
+ K(3) [22(4) - 2(1) - 2(2)] + ~c(4) [22(3) - 2(1) - 2(2)] 

1 
Fig. 13 

4 

Fig. 14 Fig. 15 

I+l (-) 

(-) 

(+1 (-) 
I---'T---I [ ]  

(-I 

1+1 (-1 
I-I-1-1 F1 

(u) / "  (+) ( - )  
F T - F F ]  -.--.__~ [-] i -T - i -  I 
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2(7('S)lL) = Z(7" 5)IL)= ~(1) ~;(2) K(3) [22(3) - 2 ( 1 ) -  2(2)] 
+ ~:(1) x(2) ~:(4) [22(4) - 2(1) - 2(2)] + x(1) x(3) ~(4) [22(1) 
- 2(3) - 2(4)] + ~:(2) ~:(3) x(4)[22(2) - 2(3) - 2(4)] 

Z(7(6)IL) = [2(1) - 2(2)]  [2(1) - 2(3)] [2(1) - 2(4)]  [2(2) - 2(3)]  [2(2) - 2(4)]  
[2(3) - 2(4)]  

~(7{6)1 L)  = co(l, 2, 3) - co(l, 2,4) + co(i, 3, 4) - co(2> 3, 4) w i th  co(i, k, 1) 
to ta l ly  an t i symmet r i c  

z=(,~(~)lZ,) = [~c(1) E(2) + ~c(3) E(4)] [,,],(1) - 2(2)] [2(3) - 2(4)] 
+ [~(1) ~(3) + ~(2) ~(4)]  [2(3) - 2(1)3 [2(2) - 2(4)]  
+ [~;( l)  ~:(4) + ~;(2) ~(3)-I [2(1) - 2(4)]  E2(2) - 2(3)3 

22(~;(13)1L) = [~(1) ~:(2) + K(3) x(4)] [co(l, 3) - co(i, 4) - co(2, 3) + co(2, 4)] 
+ [~c(1) to(3) + ~c(2) ~c(4)] [co(2, 3) - co(3, 4) - (o(1, 2) + co(l, 4)] 
+ Ere(l) x(4) + ~:(2) ~:(3)] [co(l, 2) - o9(1, 3) - (o(4, 2) + co(4, 3)] 
wi th  co(i, k) = co(k, i) 

I+l J 

3 ~  '+)FI 4 I I I I 
(+1 

5 i /  
(+) / (+1 I-) 

6 1 ~ 7[~mm 
8 9 ~ g / A ~  

I+1 [-1 I+] [-1 
,oEt  "ms 

(+l I-I 
,2 )N i l  / \ 

(+l {-} 

J 
16 ].__[__1_1 I+) (-I 

r-) I~F"I ~ 

18~J~ (-)J 

II_) 

Fig. 16 
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z(f(=~ = ~(1) ~(2) ~(3) tr [2(1) - 2(2)] [2(1) - 2(3)] [Z(1) - 2(4)] 
�9 [ 2 ( 2 )  - 2 ( 3 ) ]  [ 2 ( 2 )  - 2 ( 4 ) ]  [ 2 ( 3 )  - 2 ( 4 ) ]  

2(~(2~ = ~(1) ~:(2) ~:(3) ~(4) [co(l, 2, 3) - co(l, 2, 4) + co(l, 3, 4) :- co(2, 3, 4)] 
with co(i, k, 1) totMly antisymmetric 

2(7(4)1L) = Z(7(4)IL) = ~:(1) + ~(2) + ~:(3) + ~:(4) 

2(~(1Z)IL) = Z(~(a2)lL) = ~:(1) ~:(2) K(3) + ~:(1) ~(2) ~:(4) + ~:(1) ~:(3) ~:(4) 
+ K(2) g(3) K(4) 

a) In case of D2a, Fx3 occurs twice; therefore we have to use each of the two 
components for F13 twice with different parameters in order to have the general 
ansatz according to the first method. But if we use these components only once, 
the ansatz is qualitatively complete and reads as follows: 

Z([L) = Z(~(3)[L) -~ Z(~(4)IL) -~Z(7(6)]L) -~- z(S)IL) + Z(F<9)IL) + (F~lZ)IL) 
+ Z~(7~ 3)IL) + Z2(7~3)]L) + Z(7(1 ~)[L) + Z(7~S)IL) + Z(7~2~ 

(analogously for ~). 
b) In case of T a, F13 occurs only once, and the ansatz is as follows: 

Z( I L) = Z (7~4)1 L) + Z (~(6)1 L) + Z (~(1 z)l L) + Z2(~(13)l L) + Z (~(2 ~ L) 

(analogously for ~). 

8. Discussion 

We have seen that, by means of the theory of the groups ~', and ~, ,  the 
theory of chirality functions can be conveniently generalized to allow for 
chiral ligands. Although the groups are of large order even for relatively small n, 
the existence of a general representation theory nevertheless makes a systematic 
investigation feasible. 

There are two obvious directions in which the theory could be further 
generalized, viz: 

(a) One could consider the theory, not just of pseudoscalar, but also of vector 
and tensor properties of molecules. This could be done with the groups already 
at hand, simply by considering induction, not just of the chiral representation, 
but of an arbitrary representation, from the molecular symmetry group to the 
covering group. 

(b) One could allow the ligands to have arbitrary transformation properties 
under the symmetry operations of the frame. In this case, the covering group 
would no longer be ~, ,  but an arbitrary wreath product group [6]. 

Appendix 1. Representation Theory of the Groups ~n 

A. General Properties; Classes 

The group ~ ,  consists of all products zo, where o is a member of ~ ,  
(permutation of n ligands among n sites), and z=l~I-c(]), with the product 

J 
running over an arbitrary subset of the n sites. The order of the group is 
obviously 2"n! This is not a direct product group, since the z and ~ do not 
necessarily commute. For example, reflection at site 1 followed by permuting 1 
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and 2 leaves a reflected ligand on site 2, while pe rmuta t ion  followed by 
reflection on 1 leaves the reflected ligand on site 1. It is, however,  a semidirect 
product :  The subgroup  Z, consisting of all the reflection opera t ions  z, is, as we 
shall see presently, an invar iant  subgroup,  while the subgroup  6 ,  is not. 

These groups  were first studied by Young [11] who called them "hyper-  
octahedral  groups".  Fur ther  propert ies  of these groups  have been discussed by 
F rame  [2]. In m o d e r n  nota t ion  [6], they may  be thought  of as special cases of 
"wreath  p roduc t"  groups.  

To  elucidate the class structure, we first note that, since the opera tors  z do 
not  move  the ligands, we always have 

TO T/O / " = T oo , (1) 

i.e., the pe rmuta t ion  par t  (o) follows the mult ipl icat ion table o f ~ , .  The z opera tors  
do not  c o m m u t e  with the o, but  they do with each other, and each z is its own 
inverse. 

Because of (1), we can write 
oz = zlo, (2) 

z' = ozo-  1 (3) 

Now,  if z = ~ z(]) ,  and o takes the ligand on j to the site s j, then ozo-  1 first takes 
J 

the ligand on s t to j, where it is reflected, then taken back  to s t. The net effect, 
therefore, is to reflect on all the sites s j, and we have 

z ' =  I ] z ( s j )  - z (s) . (4) 
J 

N o w  consider a g roup  element To, and conjugate  it with a pure pe rmuta t ion  
r  Because of (3), (4), we can write 

r 1 = T ( r )~o~-  1 

It is known  from the usual theory [ l a ,  5b] of 6 ,  that  ,o~ -1 has the same cyclic 
structure as o. If o has the cyclic form 

o = (11J2. . - . / , , )  (],,+ 1,ira+ 2.-.J,,+,,,) . . . .  
then 

~o~- * = (r j, rj2.., ram ) (rim +, r~, + 2"" ram + m,) . . . .  

Also, f rom (4), if z = l iT(j) ,  then 

' T~ = [ I  ~(rj). (5) 
J 

Thus, conjugat ion of zo with a pure  pe rmuta t ion  gives an element whose 
pe rmuta t ion  par t  has the same cyclic structure, and whose reflections are 
dis tr ibuted in the same way a m o n g  the sites in the pe rmuta t ion  cycles. F o r  
example,  if o has l reflections on the m sites which are pe rmuted  in an m-cycle, 
then ~oe-x will also have l reflections on the sites belonging to an m-cycle. 

Next,  we consider  conjugat ion  with a reflection, at first restricting ourselves 
to the case of a single reflection T(j). We find 

z ( j )  Z OT ( j ) -  1 = z ( j )  Z oT ( j )  = z ( j )  Z T(Sj)O = z ( j ) T  (Sj)'r O ,  
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where we have used (4), plus the fact that the z commute with each other and 
are their own inverses. Conjugation with ~(/'), therefore, has the same effect as 
multiplication with r(})~(sj). Conjugation with a general reflection operation 
can be thought of as a series of successive conjugations with single reflections. 
By conjugating first with v(i) and then with z(s~), we achieve the net result of 

2 is the site to which the ligand on j is taken by multiplying by z(})z(s2), where s t 
two successive applications of the permutation 6. Continuing in this way, we can 
multiply by any two reflections on sites belonging to the same cycle of 6. Thus, 
conjugation with an arbitrary z is equivalent to a series of operations in which 
one carries out two reflections on sites belonging to the same cycle of 6. The net 
effect, therefore, is always to change the number of reflections in each cycle 
(if at all) by an even number, and all combinations are possible subject to this 
restriction. Conjugation with an arbitrary group element can be thought of as 
conjugation first with a permutation and then with a reflection. Combining the 
above results, we arrive at the prescription for classes given in Sec. 2.A of 
the text. 

B. Young Operators and Irreducible Representations 

Our method of proof in this subsection will closely parallel that of Boerner [ 1] 
for 6 , .  For  definitions, the reader is referred to Section 2.A of the text. 

Theorem 1. The number of different two-part diagrams of order n is equal 
to the number of classes of ~, ,  hence also to the number of its irreducible 
representations. 

No further proof of this theorem is needed, beyond the argument already 
given in Section 2.B of the text. 

We now state and prove 
Theorem 2. The operator Y7 (r) (defined in Section 2.B) is, up to a multiplicative 

constant, a primitive idempotent for the group ~ ,  (that is, it projects onto a 
particular coordinate belonging to an irreducible representation), aft-operators 
from tableaux belonging to the same diagram project onto equivalent irreducible 
representations, while those from different diagram pairs project onto inequivalent 
representations. All irreducible representations are found in this way. 

In the following, we omit the superscript on Y7 (r). The proof of the first part 
of the theorem is based on the known theorem: [ lb] .  If an operator u = Zu(o-)•, 
with u(e)va O, has the property that, for all x in the group algebra, 

uxu = gu , (6) 

(g a number, in general a function of x), then u is, up to a multiplicative 
constant, a primitive idem_potent, and conversely. 

We will show that ~ has the property (6). We first note that, for any 
~+,/3+, ~_,/3_, 

0~+ ~(~+) = ~(~+); ~_ ~(~-) = ~(~-); ~(r+)fl+ = e(fl+) d(~+); d('-)fl_ = e(fl_) ~(~-). (7) 
One also has, trivially, for arbitrary z+, r_ : 

r+~ ~"+) = ~'(r +)z+ = ~'~+~; ~_ ~<~-)= g<~-)~_ = e(~_) g~'-). (8) 

Because of (7) and (8), it follows that, if c = ~ x ~  (x arbitrary), then 

-c+ ec/3~_ = e(/~)e(~_)c, (9) 
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for arbi t rary e, fi, 'c +, 'c_. We now show that any operator  with the property (9) 
satisfies c = g ~ .  This will complete the p roof  that ~J has the property of u in (6), 
as we know that aYxY] has the proper ty  (9). 

We write the opera tor  c as 
c = Z c(~) 

where the sum goes over all g roup elements a. Equat ion (9) means 

c( a) z + earl'c_ = e(fl)e('c_ ) ~ c(~r)a , (10) 

for arbi t rary e, fi, 'c +, 'c_. First, consider terms whose permutat ion part  is of the 
form eft. We multiply 5 by 'c+e. . . f iz_ .  On  the left-hand side of (10), the term 
�9 c+efl 'c_ appears for a = e ,  on the r ight-hand side for a = z + e f i ' c _ .  We thus 
have, for arbi t rary e, fi, ~ +, 'c_ 

c(e) = e(fi) e('c_) c (v + eft 'c_).  

This means that  the coefficients c(o-) for those terms o- which appear  in ~J 
(permutat ion par t  = eft) are equal to the coefficients of the same terms in ~ ,  
multiplied by c(e). We must  now show that, when the permuta t ion  part  of ~r is 
not  e/~, c(a) = 0. If G = z~, ~ ~ eft, there are two possibilities to consider:  

i) ~ does not  mix the ( + )  and ( - )  tableaux. In this case, o- can be written as 
"c+~'c , and it can be shown [ld-] that  there exist a t ransposit ion e and a 
transposit ion fl such that  

e o f l  ~ -  i5 .  

Choosing this e fi pair, we multiply by o+o+ ~ ,-(~)~,~...e~_t~4~-l)-o . For  this operation, 
e(fi) e( 'c_)= - l : f i ,  being a transposit ion, is odd, and r_ 'c~ -~) is even. Applying 
this to our  term a, we have 

Thus, the term z + ~ "c _ appears  on both  sides of Eq. (10) for a = 'c + ~ 'c _, and we have 

c (~ )=  - c(~), c ( ~ ) = 0 .  

ii) If ~ mixes the two parts, then there is at least one si te. / in the ( - )  tableau 
such that sj is in the ( + )  tableau. We choose 'c+ = z(sj), 'c_ ='c(/'), and multiply 
by "c+ ... 'c_. Again e(fi) e ( z_ )=  - 1. We find 

.~ + "c ~ "c = .c ( s p T ( s M = .~ ~ . 

The term "c~, therefore, appears on both  sides of (10) for o-= "ca and we have 
again c(z~) = - c(z~), c('c~) = 0. 

This completes the p roof  that ~ is a number  times a primitive idempotent.  
To prove the statement about  equivalence of representations, we must  consider 
the behavior  of the ~J operators  under  conjugation.  We first consider con- 
jugat ion with a pure reflection operator  ~ = z+z_.  We obtain 

�9 c~  " c _ ' c + = ' c + / + Y r  (11) 

5 This  no t a t i on  means :  mul t ip ly  on the left by z+c~, on the r ight  by f i r  _. 
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where qC+=z~(r+)d ~'+), aX_=~(r-)~(,-), and we abbreviate g(*+), ~,tr-) with 
~+,g_.  

Consider the portion g+ qr z +. It may be written, apart from the normaliza- 
tion factors, as 

/+~+~+ = / +  Ze(/~+) ~+/~+~+ = ~ + Z  ~(/~+) ~(;+ P+~+/~+ = ~+q /+  

where we have used (4) and (8). With another application of (8), we have 
z+ g+ ~ z+ = g+ ~ Similarly, one proves 

z_ql_g_'c_ =Cgl_g_. 

Thus, we see that 
z ~ z  -1 =qT. (12) 

We now take up the conjugation of the Young operator ~ 0~ (t) with an 
arbitrary element a = z~. Let }" be the tableau obtained from } by applying the 
permutation o, and denote the corresponding operators also by primes. We find 

= T ~  - 1  t a ~ a  -1 Z O g + q / + ~ l _ g _ o - i z = z  +VO/o/+a/~_j g "/: 

= zg'+q/+gl'g'_z = "c~'z = ~ (13) 

where we have used (4), (12), and a trivial generalization of a theorem [le] 
on the conjugation of ordinary Young operators: ~ - 1  = a#,. 

Now, a necessary and sufficient condition [lf] for the equivalence of the 
representations generated by two idempotents ~J and ~ '  is that there exist 
some x in the group algebra such that 

a Y ' x ~ # 0 .  (14) 

First, let ~ 0~, belong to the same diagram. Then, because of (13), there is a 
group element a with the property o - ~ a - 1 =  ~j,. It follows that 

where we have used the fact that YT' is a multiple of an idempotent, 
q ~ ' 2 = k ~ ' . ~ t ' a = a ~  is not zero, since if it were, ~ ' = a ~ a  -1 would also be 
zero. Thus, the condition (14) is satisfied with x =  a, and we conclude that the 
representations are equivalent. 

If ~ ,  ~ '  refer to different diagrams, then there are two possibilities: 
i) n+ #n+ .  In this case, there is at least one si tej  which belongs to the ( - )  

part of t and to the (+)  part of P (or vice versa). Thus, g'+(g+) contains (e+ zj) 
as a factor, and g_(d'_) contains (e-z~). Hence, either d+g_ = 0  or g'_g+ =0,  
and we have 

t t t t ,~, ! ! l t q1'r = / + ~ ~162 g_ +qt+ql_g_=g_ql+ql_g+g_Oyl+ql_g+=O. 

ii) n + = n_. If the sites are divided differently between the (+)  and ( - )  parts 
of the two tableau pairs, then again there is a site which belongs to the (+)  part 
of one pair and to the ( - )  part of the other, and we see, just as in case (i), that 
~162 0. If they are distributed in the same way, then it follows immediately 
from a known theorem [lg] that either 

i qC+qg+=O, or ~_qr  
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Hence, 

Thus, for tableau pairs belonging to different diagram pairs, 

~,ag = 0. (15) 
But also, for any group element o-, 

0~tO'0~ = 0~tO'0~O'- 10" = 0~'0~"O" = 0 ,  

where ~" is the Young operator generated according to (13) from ~J by a. 
Since YT" refers to the same diagram as ~J, the last equality follows from (15). 
For an arbitrary element x of the group algebra, we have 

~ / ' x ~ =  y 'x(o)~'  o ~ = O .  

Thus, the condition (14) cannot be satisfied, and the two representations are 
inequivalent. 

The Young operators, therefore, generate a set of inequivalent irreducible 
representations equal in number to the number of different two-part diagrams. 
But, according to Theorem 1, this is also equal to the number of classes in the 
group, hence to the total number of inequivalent irreducible representations. 
Hence, we have found all the irreducible representations. 

This completes the proof of Theorem 2, which encompasses the statements 
made in Section 2.A of the text. 

We now proceed to define a "standard two-part tableau", analogously to the 
definition of the "standard tableau" in the usual theory of ~,. 
A standard two-part tableau is a tableau in which, in each part, reading from 
left to right along the rows, or from top to bottom along the columns, the 
numbers always increase. 

Theorem 3. The ~7 operators corresponding to different standard tableaux 
(same diagram) are linearly independent. The number of different standard 
tableaux is equal to the dimension of the corresponding irreducible representation. 

Proof For each distribution (d) of the sites between the (+) and ( - )  parts, 
arrange the standard tableau pairs in "dictionary" order [lh], Tax, t'a2 . . . . .  If 
~, ag, belong to different d's, then ~ ' =  0 because of the orthogonality of the 

parts, as used in the proof of Theorem 2. Within the same d, a trivial 
generalization of a known theorem [li] gives 

~dkq/ai = 0 for i < k. (16) 

Now consider a linear combination 

Z aaJ~aJ = O. 
d,j 

Multiplication from the right by YTax gives zero for all terms except dl; from 
which we conclude aax =0. Then we multiply from the right by ~a2, and 
conclude ad2 = 0. Continuing in this way, we find that all the aaj= O, which 
proves the linear independence. 
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Because of the linear independence, it follows [lj] that the number of 
standard tableaux, Fr, belonging to a given representation F cannot be greater 
than the dimension of the representation. We show the equality by showing that 

F~ = n ! 2 n, the order of the group. 
F 

n! 
For a diagram pair with n+ = l, n_ = n -  l, there are distributions d. 

l! (n - 1) 
For each d, the two parts must separately be standard tableaux, and the number 
of ways of achieving this is just the product FI7+)F(,L-)t of the number of 
standard tableaux belonging to the (+)  and ( - )  diagrams, 7+ and 7-. Hence 

n! 
a l  ~ t n -  1 �9 l! (n - I)! 

The sum of the squares is 

~ F 2 = ~  ~ (n!)2 ~ m~+)2m,)2 
_ = ( l ! ) Z [ ~ S l ) ! ] 2  v + , , _ - t  - . - t  �9 

From the theory of ~, ,  we know that 

Z FI ')2 = l!. 
Hence, 

l ! ( n  - l) v / = 1  

which completes the proof. 
We now turn our attention to the calculation of the characters of the irreducible 

representations. For a two-part diagram ~ = (7+, 7-) we can use the ~ operators 
for the standard tableaux, applied to some suitable function or set of functions 
(of suitable variables, such as properties of ligands on sites), to generate a com- 
plete set of linearly independent basis functions which will transform among 
themselves under ~ ,  according to the representation F. Functions corresponding 
to different d's will already be orthogonal because of their different reflection 
symmetries. Within a given d, we can assume that the functions ~vaj have been 
orthogonalized and normalized. 
Now consider the effect of a group element o- with cycle structure 

= ( v l  6 . . . .  -), . . . .  ). 

The character Z~ r) is the sum of the diagonal elements O'd~;~ ~ in the F expressions 

O- lPdJ  = 2 0 " d j ; d ' J ' l ] ) d ' J  ' " 
d' , j '  

If d is such that a mixes the two parts, then the diagonal element is zero, since 
cr ~p gives a function belonging to another d. Hence, only those d contribute to 
the character for which each cycle of a has all its members (sites) in the same part 
of the tableau pair. In other words, the cycle structure r breaks up into parts 
~+, r of cycles belonging completely to the (+)  and ( - )  parts, respectively. 
Within such a d, however, the permutation part of a acts simply as a direct 
product of two operators: one a member of ~,+,  with cycle structure ~+ in a 
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space belonging to the representation F+; the other a member of ~ ,_ ,  cyclic 
structure 4-, in a space belonging to the representation F_. As for the 
reflections, those in 4+ simply multiply by unity, while each reflection in 4- 
multiplies by ( -  1). The overall effect, then, is simply to multiply by ~a, where 
ee = +_ 1 according as the number of odd cycles in ~_ is even or odd. So we find 
the character 

Theorem 4. 

d 

where the sum goes over the above-described "compatible" distributions d. 
In this way, the character for 6 .  can be calculated from the known ones for 
the | 

As an example, we calculate the character of 6 6 
representation 

(+) ( - )  

for the class with cycle structure 

~ =(1,2; 1, 2). 

belonging to the 

The different contributions are: 

7 (r+ ~ )ffr contribution to X d 4+ 4-  ~d .. ~+ 

1. ( 2 ; )  (1 ;1 ,2 )  1 - 1  0 0 
2. ( ; 2) (1, 2; 1) - 1  - 1  0 0 
3. (1; 1) (2; 2) - 1  1 2 - 2  

Total character = - 2. 
It should be noted that d's which differ in the exchange of two cycles of the 

same kind count as different. Thus, in the above example, the first two d's would 
still be different for the class (1, 2, 2; 1) 

C. Induction and Subduction Between ~., ~'n, ~ .  

A representation F of 6. ,  applied only to the members of the subgroup ~.  
"subduces" a representation of ~., in general reducible, which may be broken 
up into its irreducible parts. Symbolically 

F-~ F~ CrrV. (17) 
F 

Because of the Frobenius induction theorem [lb, 9], Crr is also the number of 
times r is contained in the representation of 6 ,  "regularly induced" by the 
representation F of ~,. From the general formula for coefficients in terms of 
characters, we have 

1 
Crr = ~ ~)~(r)(~) )~r)(~) 

a 
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where the sum goes over all 6, i.e., over all members of the subgroup ~,.  Because 
of Theorem 4, the expression can be rewritten as 

1 Vz<r)0 ) V'  ~,<r+),,<r_) Cpr = ~(. z., /.., Lr + Lr �9 
d 

In this case, ~ contains no odd cycles, so we have e d = 1 for all d. The sum goes 
over all 6, and for each ~ over all "compatible" d. However, it may equally well 
be thought of as a sum over d, and for each d over compatible o, i.e., o E (~, + • ~,_ ). 
Thus, it may also be written as 

1 

d # 

The sum over o is obviously independent of d, with the consequence that the 
n! 

sum over d just gives the number of different d's, . So we find 
n__!n+! 

1 
cry= 

n+ ! n__ ! ~($~+ x$._) ~'~+ " 

This is obviously just the number of times the representation (F+ x F_) is 
contained in the representation of (~,§ x ~,_)  subduced by F. The answer to 
this subduction problem is known, however, and corresponds to the procedure 
used in the text [5a, 7]. 

As for subduction from ~ ,  to ~',, we note that the representation F is g or u 
with respect to the operator "c o according as n_ is even or odd, and that further 
subduction to ~ ,  must give (17). Clearly, therefore, in the subduced representa- 
tion of ~', by a F with even n_, each representation F 0 appears Crr times, 
the F,  not at all; if n_ is odd, the roles of g and u are reversed. 

In induction from ~', to ~ , ,  the procedure is reversed: In the representation 
induced by Fg, each iF with even n_ appears Crr times, the others not all; in 
that induced by F,, those with odd n appear Crr times, the others not at all. 
This completes the justification for the induction (subduction) procedures 
described in Section 2.C and used in the text. 

Appendix 2. Proofs of Assertions Made in Section 3 

A. Lattice Structure of  ~ Relation 

The set of diagram pairs is a partial ordering defined by 

>: r <: ul 

Contention: It is also a lattice. 
Proof. The union of 7 tl) and 7 r must be larger, therefore provided it is 

existent it must satisfy the condition 

oi > max (o~ 1), o~2)) , 

ui _<- min (ul 1), u12)). 

Let us construct "pseudo diagram" Y with the partial sums 

ol +)= max(ol 1), o!2)), 

u l - )=  min (ul 1), ul z)) ; 
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because of 
u~ -) - u i +  l(-) = 2u!-)-ulT_)l - u i +  i(-)=2min(u}l),u!z))-min(ul~l~u~2_)l) 

�9 (1) (2) - mm(u~ +i, u~+i) > 2 min(@ ), u} 2)) 
�9 -. (1) ~ , , ( 1 )  , ,(2) .1_,,(2) 

- -  mlnlui_ 1 - -  ~ i + 1 ~  ~ i - 1  ~ ~ i +  11 

= min (2@21 + 2#} 1), 2u}2) 1 + 2#} 2)) 

A_ ,,(1) 0 , , (2 )  _t_ ,,(2) j _  ,,,(2) ~ > 0 
- min(2u}~l + #} l ) ,  ~,~+l, -~i-1 - -  O'i " 1 " i + 1 !  = 

the lengths of columns do not increase with increasing indices. Therefore 7 ~ -~ 
is a diagram; the pseudodiagram 7 (+) has rows for which increasing cannot be 
excluded. Let us take therefore the columns of 7(+), they do not increase with 
increasing indices as follows from the construction of 7 (+). Now we construct 
the diagram 7 '(+) with the same columns. For  this we have o~(+)>oI +). Any 
single diagram which is larger has other columns, therefore it is the smallest 
single diagram. It follows that the diagram pair with o~ (+) and u~ (-) = u} -) is the 
smallest of all larger ones and we may call it union of ~(1) and ~(2)(7(1),7~2)). 

B. "Largest Remainder" 
In the beginning of this section, we consider the largest remainder prescrip- 

tion with the transfer being carried out in a particular order: First the l's, then the 
2's, etc. At the end, we will see that the order is irrelevant. 

To prove the validity of the prescription, we start with some definitions and 
preliminary remarks. 

We call two allowed arrangements of the symbols among the boxes 
"equivalent" if they have the same remainder�9 Since the remainder, as well as 
the C-condition, depends only on the number of symbols in each column, we can 
assume without loss of generality that all symbols in a given column are piled 
up at the bottom of the column. Now, for fixed number of symbols in each 
column, we define a "standard" arrangement as one in which the l's are placed 
as low down as is compatible with (C) and the fixed column distribution 
(number of symbols in each column), the 2's as low as is compatible with (C), 
the column distribution, and the placement of the l's, etc. 

Now, starting with an arbitrary arrangement d ,  we can rearrange it into 
standard form as follows: 

We rearrange the symbols among the occupied boxes so that the l's are at 
the bottoms of the v(~ b) longest occupied columns (i.e., i n  the v] b) lowest-lying 
occupied boxes with no two in the same column), the 2's are at the bottoms of the 
v(2 b) longest columns of the remainder which still have space available, etc. This 
standard arrangement d~  is equivalent to d ,  as the same boxes are occupied 
as before, though not necessarily by the same symbols. Now, if we can move an 
entire pile of symbols from one column into a longer, previously unoccupied 
one, we obtain an arrangement with a larger remainder than ~r since we have 
increased the length of a shorter column of the remainder at the expense of a 
longer one. Let us do this with all the "l-piles" (piles with l's at the bottoms), 
i.e., move the 1-piles into the v~ longest columns of 7 (~), choosing the columns 
farthest to the right in case of ties. (This will not displace any other piles, as the 
1-piles already are in the longest occupied columns.) The resulting arrangement 
has the l's placed according to the prescription, and has a larger remainder 
than does s~r It is standard as far as the placement of the l's is concerned; if it 
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is not  also s tandard  for the other  symbols, we rearrange them as before to form a 
s tandard arrangement ,  d '  s whose remainder  is larger than that of d s .  Similarly, 
we now move the 2-piles (the 2's, plus whatever else may be on top of them) into 
longer columns (of ?(a) minus the squares already occupied by l's) where possible 
and rearrange into a s tandard  arrangement ,  d : ,  in which the l ' s  and 2's are 
arranged according to the prescription and whose remainder  is larger than 
that of d ' s ,  hence also larger than that  of d~ .  Cont inuing this procedure for the 
3's, 4's, etc., we end up with the prescribed arrangement.  Its remainder  is greater 
than that  of d s ,  hence also greater than that  of the equivalent arrangement  d .  
But d was arbitrary,  so the prescribed ar rangement  has a larger remainder  than 
any other, and the validity of the prescription is proved. 

It is evident f rom the nature of the p roof  that  the prescription is, as 
claimed in Section 3, independent  of the order  of placement of the symbols. 
To prove the prescription for another  order  of placement,  one need only 
redefine "s tandard  a r rangement"  in such a way that first preference (i.e., the 
lowest available places) is given to the symbols which are to go in first, then t h o s e  
which go in next, etc. 
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